亚马逊云科技推出三款由自研芯片支持的新Amazon EC2实例

速途网12月1日讯(报道:乔志斌)今日,在亚马逊云科技re:Invent全球大会上,亚马逊云科技宣布推出三款由自研芯片支持的新Amazon Elastic Compute Cloud (Amazon EC2)实例,帮助客户显著提升在Amazon EC2上运行的工作负载的性能、成本和能源效率。新C7g 实例由Amazon Graviton3 处理器支持,与由 Amazon Graviton2 处理器支持的当前一代 C6g 实例相比,性能提高25%。由Amazon Trainium芯片支持的新Trn1实例为在Amazon EC2中训练绝大多数机器学习模型提供最佳性价比,及最快的训练速度。基于自研Amazon Nitro SSDs(固态驱动器)的新存储优化型Im4gn/Is4gen/ I4i实例为在Amazon EC2上运行的I/O密集型工作负载提供最佳存储性能。这些基于亚马逊云科技自研芯片的新Amazon EC2实例的发布,将帮助客户支持其关键业务应用程序。

亚马逊云科技Amazon EC2副总裁David Brown表示:“我们对自研芯片的持续投入升级,已经让客户在当今一些关键工作负载中获得了巨大的性价比优势。客户希望我们在每一代新的EC2实例上不断突破边界。亚马逊云科技的持续创新让客户有机会使用这些全新的、改变游戏规则的实例运行其重要的工作负载,获得更好的性价比。”

C7g实例由新的Amazon Graviton3处理器支持,与由Amazon Graviton2处理器支持的当前一代C6g实例相比,性能提高多达25%

基于Amazon Graviton2的计算实例自2020年推出以来,被众多客户如DirecTV、Discovery、Epic Games、Formula 1、Honeycomb.io、Intuit、Lyft、MercardoLibre、NextRoll、Nielsen、SmugMug、Snap、Splunk和Sprinklr等在生产中使用并已经获得显著的性能提升和成本节省。基于Graviton2的系列实例共有12种,包括通用型、计算优化型、内存优化型、存储优化型、突发性能型和加速计算型实例,让客户拥有云上至深至广的计算选择,并兼顾性价比和能效。随着客户在云中开展更多计算密集型工作负载如高性能计算(HPC)、游戏和机器学习推理,相应的计算、存储、内存和网络需求也随之增长,客户需要寻求更佳的性价比和能效来运行这些工作负载。

由Amazon Graviton3处理器支持的C7g实例与由 Graviton2 处理器支持的当前一代 C6g 实例相比,可将计算密集型工作负载性能提高多达25%。Amazon Graviton3处理器与Graviton2相比,为科学计算、机器学习和媒体编码工作负载提供高达2倍的浮点运算性能,为加密工作负载速度提升高达2倍,为机器学习工作负载提供高达3倍的性能。Amazon Graviton3处理器的能效也更高,在相同性能下,与同类型EC2实例对比,可节省高达60%的能源消耗。C7g实例是云中第一个采用最新DDR5内存的实例,与基于Amazon Graviton2的实例相比,它提高了50%的内存带宽,从而提高了科学计算等内存密集型应用的性能。与基于Amazon Graviton2的实例相比,C7g实例的网络带宽也高出20%。C7g 实例支持Elastic Fabric Adapter (EFA),允许应用程序直接与网络接口卡通信,提供更低且更一致的延迟,提高需要大规模并行处理(如 HPC 和视频编码)的应用程序的性能。C7g实例现已提供预览版。

Amazon Trainium芯片支持的Trn1实例为在Amazon EC2中训练绝大多数机器学习模型提供最佳性价比,及最快的训练速度

越来越多客户正在构建、训练和部署机器学习模型,支持能够重塑其业务和客户体验的应用程序。为了确保提高准确性,这些机器学习模型必须构建在越来越多的训练数据上,导致其训练成本越来越高。这可能会限制客户能够部署的机器学习模型数量。亚马逊云科技为机器学习提供至深至广的计算服务选择,包括采用NVIDIA A100 Tensor Core GPU的EC2 P4d实例和采用Habana Labs  Gaudi 加速器的 EC2 DL1 实例。但是,即使拥有当今最快的加速实例,训练持续变大的机器学习模型仍然是非常昂贵和耗时的。

由Amazon Trainium芯片支持的Trn1实例为在Amazon EC2中进行深度学习模型训练提供最佳性价比以及最快的训练速度,与P4d实例相比,通过Trn1实例训练深度学习模型的成本降低多达40%。Trn1实例提供800Gbps EFA网络带宽(比最新基于GPU的EC2实例高两倍),并与Amazon FSx for Lustre高性能存储集成,让客户可以启动具有EC2 UltraClusters功能的Trn1实例。通过EC2 UltraClusters,开发人员可以将机器学习训练扩展到一万多个与 PB 级网络互连的 Trainium 加速器,让客户按需访问超算级性能,即便是最大型和最复杂的模型,训练时间也可以从几个月缩短到几天。Trn1实例现已提供预览版。

采用全新Amazon Nitro SSDsIm4gn/Is4gen/ I4i实例可为I/O密集型工作负载提供最佳存储性能

如今,客户将I3/I3en存储优化型实例用于需要直接访问本地存储数据集的应用程序,比如横向扩展的事务型和关系型数据库(如MySOL和PostgreSQL),NoSQL数据库(如Cassandra、MongoDB、Redis等),大数据(如Hadoop)和数据分析工作负载(如Spark、Hive、Presto等)。I3/I3en实例以低成本提供非易失性内存标准(NVMe) SSD支持的实例存储,针对低延迟、高 I/O 性能和吞吐量进行了优化。客户喜欢I3/I3en实例提供的快速事务处理能力,但随着其工作负载的不断升级——在更大规模的数据集上处理更复杂的事务,他们需要在不增加成本的情况下获得更高的计算性能和更快的数据访问速度。

Im4gn/Is4gen/I4i实例旨在通过架构最大限度提高I/O密集型工作负载的存储性能。通过自研的 Amazon Nitro SSDs ,Im4gn/Is4gen/I4i实例提供高达 30 TB 的 NVMe 存储,与上一代I3实例相比,I/O 延迟降低了 60%,延迟可变性降低了 75%,从而最大限度地提高了应用程序性能。Amazon Nitro SSDs通过优化存储堆栈、虚拟化管理程序和硬件与Amazon Nitro 系统紧密集成。与使用商用SSD相比,亚马逊云科技同时管理Amazon Nitro SSDs的硬件和固件,使SSD更新交付速度更快,让客户可以从改进的功能中获益。Im4gn 实例(现已可用)采用 Amazon Graviton2 处理器,与 I3 实例相比,性价比提高多达 40%,每 TB存储成本降低多达 44%。Is4gen 实例(现已可用)也采用 Amazon Graviton2 处理器,与 I3en 实例相比,每 TB 存储成本降低多达 15%,计算性能提高多达 48%。

(0)
上一篇 2021年12月1日 18:17
下一篇 2021年12月1日 21:19